
Ananda Gunawardena

Lecture 27
C and Assembly

This is a quick introduction to working with x86 assembly. Some of the instructions and
register names must be check for latest commands and register names. Programming in
assembly language requires one to understand the instruction set architecture of the
processor. Writing a program in machine language or assembly language is like
programming a microprocessor kit. It requires the understanding of low level details of
how a machine may execute a set of instructions, fetch-execute cycle among other things.
Today most programmers don’t deal directly with assembly language, unless the task
requires direct interfacing with hardware. For example, a programmer may consider
using an assembly language to write a device driver or optimize part of a game program.

To understand the assembly code, Let us consider the simple code below.

#this is in a file first.s

.globl main

main:

 movl $20, %eax

 movl $10, %ebx

 ret

The first line of the program is a comment. The .globl assembler directive makes the
symbol main visible to the linker. This line makes the program linked up with the C start
up library. If we try to remove this line, then we get the following message

% gcc first.s

/usr/lib/crt1.o: In function `_start’:

: undefined reference to `main’

collect2: ld returned 1 exit status

The commands like movl $20, %eax means that the bit pattern of 20 is moved to register
%eax.

Using the GNU C compiler –S option, we can generate the assembly code for a source
code. For example, consider the program simple.c

int main(){

 int x=10,y=15;

 return 0;

}

When the program is compiled with –S option

� gcc – S simple.c

it produces the assembly code file simple.s as shown below.

.globl main

 .type main, @function

main:

 pushq %rbp

 movq %rsp, %rbp

 movl $10, -8(%rbp)

 movl $15, -4(%rbp)

 movl $0, %eax

 leave

 ret

The intent here is to give some level of understanding of how assembly code works.
There are traces of the initialization of x and y in the code as well as many uses of esp
(stack pointer) and ebp (base pointer) references. The l at the end of each instruction
indicates that we are using opcode that works with 32-bit operands. The registers are
indicated by % in front and -4(%ebp) for example, indicates a reference to ebp-4 location.
For example,
movl $10, -4(%ebp)

indicates moving the value 10 to ebp-4.

Let us look at another example of a C program converted into assembly code.

#include <stdio.h>

int main(){

 printf("hello world\n");

 return 0;

}

// Assembly code
.LC0:

 .string "hello world"

 .text

.globl main

 .type main, @function

main:

 pushq %rbp

 movq %rsp, %rbp

 movl $.LC0, %edi

 call printf

 movl $0, %eax

 leave

 ret

In 15-213 you will be required to program in x86 assembly. In this short introduction we
only expect to understand how to interpret simple assembly programs, how to write
simple assembly programs, assemble programs into object code and how to link them up
with a C program.

Looping with Assembly
Unlike high level languages, assembly language does not have any direct loop constructs.
Instead a programmer makes use of command like je (jump equal) to test for loop exit
condition. Here is a program to find the factorial 4 and we can assemble and run this
program

factorial of 4
in file factorial.s

 .LC0:
 .string "%d \n"
 .text
.global main
main:
 movl $4, %eax
 movl $1, %ebx
L1: cmpl $0, %eax
 je L2
 imul %eax, %ebx
 decl %eax
 jmp L1
L2: movl %ebx, 4(%esp)
 movl $.LC0, (%esp)
 call printf
 movl $0, %eax
 leave
 ret

The program correctly prints out the factorial of 4.
Caution: This program may not contain all assembly directives needed to compile and run. If you type this
into a file and run, it may segfault.

Functions
A function is a piece of code that is designed to perform a subtask in the program.
Functions can have local variables, receive arguments, and pass a result back to the
calling program. Consider the following subroutine foo that return the value 4 to main.

in file subroutine.c and subroutine.s

.globl foo

 .type foo, @function

foo:

 pushl %ebp

 movl %esp, %ebp

 movl $4, %eax

 popl %ebp

 ret

.LC0:

 .string "The value is %d \n"

 .text

.globl main

 .type main, @function

main:

 pushl %ebp

 movl %esp, %ebp

 movl $0, %eax

 subl %eax, %esp

 call foo

 movl %eax, -4(%ebp)

 movl -4(%ebp), %eax

 movl %eax, 4(%esp)

 movl $.LC0, (%esp)

 call printf

 movl $0, %eax

 leave

 ret

A function is called with the instruction “call foo”. This instruction transfers the control
of the program to foo function. The two special registers ebp (base pointer) and esp (stack
pointer) handles call and return mechanisms of function calls. The values are returned to
the calling program via register eax.

Stack
A stack data structure allows two operations, push and pop. Both operations are handled
from the top of the stack. Imagine a stack of books, where you can add a book to the top
(push) and remove a book from the top (pop). Stacks are useful data structures for saving
the status of a program before branching out. For example, when a subroutine is called
from main, the status of the environment is pushed into the stack. Upon return from the
subroutine, the status variables are pop from the stack to restore the calling program
status. The key operations of a stack are the push and pop. For example,

popl %eax

places the top element of the stack on the register eax and change the stack pointer esp.
The stack pointer (esp) points to the top of the stack. To “decrement” the stack pointer
esp we can simply add 4 as follows. Stacks may grow upward or downward. The
instruction

addl $4, %esp

causes the stack pointer to point to the next 4 bytes of memory. Note that if the stack
grows downward, then a push operation subtracts 4 from esp and pop operation adds 4 to
esp.

Local Variables
C programs generally define local variables scope as the module where they are defined.
The registers are used to manipulate the variables, but local variables are generally stored
in the stack. Some variables, perhaps declared as register variables may hold space in a
register, but most variables do not get register space but instead allocated space in the
stack. Consider the following program that defines a local variable of value 10 and push
that into the stack. Upon exit from foo all local variables are removed from the stack. In

the above code, call foo causes the address of the instruction after call foo is to be saved
in the stack.

in file local.s

.global main
main: movl $3, %eax
 call foo # save the address of the next instruction on stack

 subl $4, %eax
 ret
foo:
 pushl %ebp # save the address of base pointer
 movl %esp, %ebp # move the base pointer to where stack pointer
 movl $10, %ebx # push the local variable value to a register
 pushl %ebx # push the value of register to stack
 movl %ebp, %esp # restore the esp upon return
 popl %ebp # restore the base pointer
 ret # pop the stack to see where to return

Mixing C and Assembly
C programs and assembly programs can be mixed to form a complete program. For
example, consider the following C program

// file in main.c
#include <stdio.h>
int main(){
 int i = foo(5);
 printf(“The value is %d \n”, i);
return 0; }

Now consider the function foo written in assembly

file in foo.s

.global foo
foo:
 movl 4(%esp), %eax # (esp+4) contains the value 5
 imull %eax, %eax # multiply the register eax by itself

 ret # return values are given back thru eax

Both programs can be compiled, linked and run using
� gcc main.c foo.s
� ./a.out

 Global Variables
A global variable in a C program is declared outside of any function (including main).
For example, the following program defines a global variable x as follows.

// in file global.c

int x = 10;
int main() {
 int y = x;
}

The assembly output produced by C compiler includes a global identification of the
variable x.

.globl x

 .data

 .align 4

 .type x, @object

 .size x, 4

x:

 .long 10

 .text

.globl main

 .type main, @function

We have provided only a part of the output. The full assembly code can be generated by
compiling the file global.c
> gcc –S global.c

Conclusion
This brief introductory lecture was intended to give you some very basic facts about
assembly language, the stack, linking assembly and C programs. Here are few more
references.

References:
[1] From C to Assembly – Linux Gazette, Issue 94, September 2003 - Hiran Ramakutty
[2] Guide to Assembly Language Programming in Linux (Paperback)
by Sivarama P. Dandamudi, Springer-Verlag, 2005
[3] Computer Systems: A Programmer's Perspective by Randal E. Bryant and David R. O'Hallaron
Prentice Hall, 2003. [15-213 textbook]

